OpenJudge

200604:NOIP2006-04-2k进制数

总时间限制:
10000ms
单个测试点时间限制:
1000ms
内存限制:
65536kB
描述

设r是个2k 进制数,并满足以下条件:
    (1)r至少是个2位的2k 进制数。
    (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。
    (3)将r转换为2进制数q后,则q的总位数不超过w。
    在这里,正整数k(1≤k≤9)和w(k

≤30000)是事先给定的。
    问:满足上述条件的不同的r共有多少个?
    我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2k 进制数r。
    例:设k=3,w=7。则r是个八进制数(23=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:
    2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。
    3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。
所以,满足要求的r共有36个。
输入
输入文件digital.in只有1行,为两个正整数,用一个空格隔开:
k W
输出
输出文件digital.out为1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。
(提示:作为结果的正整数可能很大,但不会超过200位)
样例输入
3 7
样例输出
36
全局题号
3902
提交次数
1
尝试人数
1
通过人数
1