OpenJudge

200201:NOIP2002-01-均分纸牌

总时间限制:
5000ms
单个测试点时间限制:
1000ms
内存限制:
65536kB
描述

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
  移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
  现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

  例如 N=4,4 堆纸牌数分别为:
  ① 9 ② 8 ③ 17 ④ 6
  移动3次可达到目的:
  从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入
键盘输入文件名.文件格式:
N(N 堆纸牌,1 <= N <= 100)
A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。
样例输入
a.in:
4
9 8 17 6
样例输出
3
提示
5个测试点
测试数据下载:http://115.com/file/clqsoy8p#NOIP2002测试数据.zip
全局题号
3887
提交次数
14
尝试人数
9
通过人数
8